
MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 197 
JANUARY 1992, PAGES 315-322 

THE F-FUNCTION REVISITED: POWER SERIES 
EXPANSIONS AND REAL-IMAGINARY ZERO LINES 

JAN BOHMAN AND CARL-ERIK FROBERG 

ABSTRACT. Explicit power series expansions of the gamma function are given 
close to -10, -2, -1, 0, 1, 2, 3, 4, and 10 together with formulas that can 
be used in other integer points. Further, curves along which the real or imaginary 
part of the function vanish are presented. 

1. INTRODUCTION 

When just one isolated value of the F-function is needed, it may be computed 
in a straightforward fashion by Stirling's formula, followed by repeated use of 
the functional relation F(z + 1) = zF(z) . However, if more detailed knowledge 
of the function is desired within a small area close to the real axis, a different 
approach might be reasonable. For n = 2, 3, 4, 10 we give expansions of the 
form 

F(n+ 1 +z) =n!(l +diz+d2z2+ ), 

andfor n=0, 1,2, 10, 

(-l)'n!F(-n + z) = n/(l - z) - l/((n + 1)(1 + z)) 

+ Z-1(l+ +iZ+f2Z2 + .. 

Reasonably fast convergence is obtained, at least for lzJ < 1 . 

2. A USEFUL ALGORITHM 

We will propose an algorithm for computation of certain finite products (also 
infinite when convergent). This will give us a tool for determining various sets 
of coefficients. Let 

n X Mk 

(1) P = f I + ) = + ulx + u2x2 2+*. 

k=l P 

where Pk and mk are given real numbers 0 0 and the coefficients Uk are to 
be determined. Taking logarithms and differentiating, we obtain 

In P = mk In ( + ) P Z 
X+ pk 

k=1 k=1 
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Now we define 
n 

(2) fr(x) 1)r+l Mk(x+pk) r, r= 1, 2 3... 
k=1 

with the obvious property 

(3) f(x)= rfr+ I (x). 

Further, we put 
n 

(4) fr(O) = Wr = (_1)r+1 Zmpr 
k=l 

Repeated differentiation gives 

P' =Pf, 

P" = P'fi + Pf2, 

P"' = P11f1 + 2P'f2 + 2Pf3 

piv = P"''f1 + 3P"f2 + 6P'f3 + 6Pf4, 

Setting x = 0 and observing that p(r)(0) = r!ur with P(O) = 1, we get the 
system 

U1 = W1, 

2U2 = WIUI + W2, 

(5) 3U3 = W1U2 + W2U1 + w3 

4U4 = W1U3 + W2U2 + W3u1 + W4, 

Note that if the mk are positive integers, then P is a polynomial, and all Uk 
with k > Enr=1 mr are zero. Using Cramer's rule, we find after some manipu- 
lation: 

WI -1 0 0 

1 W2 W1 -2 ... 0 
(6) Un=- w3 W2 WI .. .. 

(6) ...n........ -(n-i) 
Wn Wn- 1 * ... WI 

In practical computation the system (5) should be solved recursively. However, 
we also present the first few values explicitly: 

U1 = WI, 

U2=- (+W2), 

(7) U3 = (W3 + 3w1W2 + 2W3), 

u4 = 14(w4 + 6Wfr2 + 8w1W3 + 3W2 + 6W4), 

*... S. . ...... 

It is interesting to observe that these expressions also appear in a quite differ- 
ent context. Consider the permutations of, e.g., four objects, which we denote 
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1, 2, 3, and 4. Let (1)(2)(3)(4) be the identical permutation; (1 3)(24) the 
permutation where 1 and 3 switch places, and the same for 2 and 4; (3)(1 42) 
the permutation where 3 keeps its place, while 1 goes over into 4, 4 into 2, and 
2 into 1; etc. Denote a part permutation involving k objects by Sk; then, e.g., 
(1)(3)(24) is written S2s2, (2)(I 43) as S1s3, and so on. Writing down all 
24 = 4! permutations and dividing by 24, we get the so-called cycle index 

S4 = 24( + 6ss2 + 8sis3 + 3s22 + 6s4), 

an expression with exactly the same structure as U4 in (7). 

3. POWER SERIES EXPANSION FOR F(z + 2) 

As is well known, the F-function is defined in product form by 

(8) en= I + z/n 

where as usual y is the Euler constant, y = 0.57721 56649... . Taking loga- 
rithms, we obtain 

00 

ln F(z+ 1) = -yz+Z In(l+ + 
n=1 

= (I y)z - In(l + z) + E (l((n)_ln 
n=2 

where ;(n) = 1 k-a, n > 1, is the Riemann zeta function. Now we 
introduce the notations 

(9) gr{ = (-_Yl(4(r)-1), r = 2, 3, 4, ..., 

and obtain F(z + 2) = exp(gz + Ig2Z2 + Ig3Z3 +* ). We can then construct 
the corresponding power series 

G(z)=F(z+2)=exp(giz+Ig2z2 ) 
(10) 2 2 

= + cz + C2Z2 + C3Z3 + 

Differentiation gives 

G'(z) = G(z) * (gl + g2z + g3z2 +* ) =ci + 2c2z + 3C3Z2+*. 

Hence, we obtain a linear system 

Ci = gl1S 

2C2 = g1C + g2, 

3C3 = g1c2 + g2c1 + g3 

which has the same structure as (5). The solution is 

g1 -1 0 0 *-- 0 

1 g2 gl -2 0 ... 0 

(11) cn=Cn g3 g2 gl -3 ... 0 
* .. g ... ... ... ... 

gn gn- I .. 
.. .. 
* 1-- g 
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TABLE 1 
Numerical values of g, (9) and cn (1 1). For larger values of k, 
(-l)k(2-(k+l) - 3-(k+l)) is a remarkably good approximation of 
Ck . 

n gn Cn n gn Cn 

1 0.4227843351 +0 0.4227843351 +0 11 -0.4941886041 -3 -0.24094 14358 -3 
2 0.6449340668+0 0.4118403304+0 12 0.2460865533-3 0.1216738065-3 
3 -0.20205 69032 +0 0.81576 91925 -1 13 -0.12271 33476 -3 -0.60792 89132 -4 
4 0.8232323371 -1 0.7424901075-1 14 0.61248 13506 -4 0.3045355703-4 
5 -0.36927 75514 -1 -0.26698 20687 -3 15 -0.30588 23631 -4 -0.15234 93590 -4 

6 0.17343 06198 -1 0.11154 04572 -1 16 0.15282 25941 -4 0.76217 79696 -5 
7 -0.83492 77382 -2 -0.28526 45821 -2 17 -0.76371 97638 -5 -0.38121 10400 -5 
8 0.40773 56198 -2 0.21039 33341 -2 18 0.38172 93265 -5 0.19064 91658 -5 
9 -0.20083 92826-2 -0.91957 38388-3 19 -0.19082 12717-5 -0.95338 77803-6 

10 0.99457 51278 -3 0.49038 84508 -3 20 0.9539620339 -6 0.47674 16946 -6 

The coefficients c, are well known; they were given by Davis [1, p. 186] 
and were denoted there by En . On the other hand, only very few power series 
expansions are reported in the Handbook of Mathematical Functions [2]; the 
most interesting is one for 1 /F(z). We note here that z = +1 leads to the 
relation c1 + C3 + C5 + =C2 + C4 + C6 + 

The numerical values of c, are obtained recursively from the linear system. 
They are displayed in Table 1 together with the constants g, . 

4. POWER SERIES EXPANSIONS FOR F(n + 1 + z) 

Using the fundamental relation F(z + 1) = zF(z) repeatedly, we find, when 
n > 2 , 

F(n + 1 + z) = (z + n)(z + n - 1) ...(z + 2)F(z + 2) 

or, after division by F(n + 1) = n!, 

(12) F(n--1--z) (1+ ) (1 + ) (1 + -)(1 + cz+c2z2 + .) 

The product (1 + z)(1 + z) * * (1 + z) = 1 + a1z + * + an-1zn-1 is computed 
as in (5) with Wr = (-l)r+l1 = k-r (note that Wr depends on n). Finally, 
we compute the product 

(13) (1 +alz+ +an-zn- )(1 + C1Z + C2 2+.)= 1+diz+d2z2+ 

and obtain the result 
k 

(14) dk =Z arck-r 
r=O 

with ao = c0 = 1 and ak = 0 when k > n. It is obvious that also the 
coefficients d1, d2, d3, ... depend on n . The case n = 1 is trivial, since then 
dk = Ck . Also the case n = 0 is easy to handle, since the relation F(z + 1) = 
F(z + 2)/(z + 1) leads to dk = ck - dk l with do = 1 . For n = 2, 3, 4 and 
10, numerical values of dk are given in Table 2. 
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TABLE 2 
The coefficients dk for computation of F(n + 1 + z) = F(n + 1) . 
(1 + diz + d2z2 + ) . When n =1 we have dk = ck (see Table 
1). When n = O, use F(l + z) =(1 + c1z + c2z2 + **)/(1 + z) 

k n = 2 n = 3 n = 4 n = l0 
1 0.92278 43351 +00 0.12561 17668 +01 0.15061 17668 +01 0.23517 52589 +01 
2 0.62323 24980 +00 0.93082 72763 +00 0.12448 56693 +01 0.28129 53288 +01 
3 0.28749 70845 +00 0.49524 12505 +00 0.72794 80695 +00 0.22782 17646 +01 
4 0.11503 74704 +00 0.21086 98319 +00 0.33468 01445 +00 0.14037 86967 +01 
5 0.36857 52331 -01 0.75203 34677 -01 0.12792 08047 +00 0.70121 89188 +00 

6 0.11020 55468 -01 0.23306 39579 -01 0.42107 23248 -01 0.29552 29663 +00 
7 0.27243 77038 -02 0.63978 95266 -02 0.1222449421 -01 0.10799 66380 +00 
8 0.67761 04301 -03 0.15857 36109 -02 0.3185209926 -02 0.34911 52784 -01 
9 0.1323928315 -03 0.3582629749-03 0.7546970023-03 0.1013547328-01 

10 0.30601 53141 -04 0.74732 47525 -04 0.16429 82190 -03 0.26742 17142 -02 

11 0.42527 89587 -05 0.14453 30006 -04 0.33136 41887 -04 0.64741 28057 -03 
12 0.12030 88620 -05 0.26206 85149 -05 0.62340 10164 -05 0.14494 79266 -03 
13 0.44011 95495-07 0.44504 14950 -06 0.11002 12782-05 0.3020944116-04 
14 0.57111 38227 -07 0.71782 03392 -07 0.1830424077 -06 0.58937 70496 -05 
15 -0.81573 76050 -08 0.10879 75137 -07 0.28825 25985 -07 0.10815 35153 -05 

16 0.43117 48695 -08 0.15926 23345s-08 0.43125 61188 -08 0.18745 04774 -06 
17 -0.12205 52013 -08 0.21669 75524 -09 0.61485 33886 -09 0.30796 97095 -07 
18 0.43645 75319 -09 0.29606 86106 -10 0.83781 24916 -10 0.48116 78892 -08 
19 -0.14195 14757 -09 0.35343 68324 -11 0.10936 08359 -10 0.71695 06577 -09 
20 0.47804 44902 -10 0.48729 04734 -12 0.13708 82554 -11 0.10213 91242 -09 

5. POWER SERIES EXPANSION RELATED TO F(-n + z) 

By straightforward calculation we find 

(15) F(z - n) = (-(1+Z)(1-Z)1- (.)1-)} . 

Hence, mk = -1 and Pk = -k, if we add an extra value pO = 1 . In this way 
we obtain 

n 
(16) Wr = (-1)r + Zk-r. 

k=1 

The coefficients br for the reciprocal of the expression within braces are again 
obtained from (5). The final coefficients er defined through 

F(z - n) - ((-1)n/n!z)(1 + elz + e2z2 +2 ) 

can be computed as in (14). When n = 0, we have 

r(Z)rF(z+2) =1(1+CIZ+c2z2+ .92 1 z+Z2-. ) 
z(z +1) z 

- 1 +el(z1+e2+ ), 
z 

and hence er = cr - er-I with eo = 1 . Obviously, the coefficients e and d are 
identical when n = 0. 
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TABLE 3 
Coefficients fk for n = 0, 1, 2, 10 and k = 1(1)20 defined 
by (-l)nn!F(-n + z) = n/(l - z) - 1/(n + 1)(1 + z) + 
1(1 +fiz +f2z2 -"). 

k n=0 n=I n=2 n=10 
1 0.42278 43351 +0 -0.77215 66490 -1 -0.74388 23316 +0 -0.75573 38320 +1 
2 -0.10944 00467 -1 -0.88159 66957 -1 -0.4601008354 +0 -0.57281 88072 +1 
3 0.92520 92392 -1 0.43612 54346 -2 -0.22568 91633 +0 -0.39862 02989 + 1 
4 -0.18271 91317 -1 -0.13910 65882 -1 -0.12675 52405 +0 -0.25857 89587 +1 
5 0.18004 93110 -1 0.40942 72277 -2 -0.59283 34797 -1 -0.15806 26439 +1 

6 -0.68508 85379 -2 -0.27566 13102 -2 -0.32398 28709 -1 -0.9220023064 +0 
7 0.39982 39558 -2 0.12416 26456 -2 -0.14957 51709 -1 -0.51762 70823 +0 
8 -0.18943 06217 -2 -0.65267 97612 -3 -0.81314 38305 -2 -0.28225 77798 +0 
9 0.97473 23780 -3 0.32205 26168 -3 -0.37436 66536 -2 -0.15036 97153 +0 

10 -0.48434 39272 -3 -0.16229 13104 -3 -0.20341 24578 -2 -0.78757 12620 -1 

11 0.2434024914-3 0.81111 18100-4 -0.93595 11081 -3 -0.4069995193-1 
12 -0.12172 86849 -3 -0.40617 50386 -4 -0.50859 30579 -3 -0.20839 00601 -1 
13 0.60935 79356 -4 0.20318 28969 -4 -0.23397 82393 -3 -0.10591 68640 -1 
14 -0.30482 23652 -4 -0.10163 94683 -4 -0.12715 30665 -3 -0.53582 39971 -2 
15 0.15247 30062 -4 0.50833 53797 -5 -0.58493 17943 -4 -0.27001 07474 -2 

16 -0.76255 20927 -5 -0.25421 67130 -5 -0.31788 75684 -4 -0.13576 96113 -2 
17 0.38134 10527-5 0.1271243397-5 -0.14623 13503-4 -0.6812730636-3 
18 -0.19069 18869 -5 -0.63567 54719 -6 -0.7947242984-5 -0.34155 98177 -3 
19 0.95353 10888 -6 0.31785 56169 -6 -0.3655765875 -5 -0.1710444012 - 3 
20 -0.47678 93943 -6 -0.15893 37773 -6 -0.19868 16715 -5 -0.85635 72098 -4 

It turned out that the coefficients ek for large values of k essentially behave 
as n + (-_1)k /(n + 1) . For this reason, we tabulate in Table 3 other coefficients 
fk defined by 

(17) fk = ek -(n + (_ )kl(n + 1)), 

giving much better accuracy. If a complete power series is wanted, it is an easy 
matter to recompute the coefficients ek . Using the new coefficients, we find 

(18) F(-n+z) - (n - 1)!(1 -z) (n + 1)!(1 + z) n!z (1fizf2z ). 

This formula will give reasonable results, even when I zI is only slightly less 
than 1, and when I zI < 2 , we will get 10-digit accuracy. In the case n = 0 we 
get 

(19) fk =dk+(_1)kl I=ek+( 1)k1, k= 1, 2,3,... 

with 
1 1~~~~~ 

r(Z) = l1z+ -(l + flZ + 2Z+-) 1 +z z 
and, of course, F(l + z) = zF(z). For larger values of k, the coefficients fk 
behave approximately as -2-k(n(n - 1) + (_1)k/(n + 1)(n + 2)). 

Since the coefficients vary in a very regular manner for larger values of k, at 
least 8-digit accuracy is easily attainable when jzj < 1. 
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6. ZERO LINES FOR THE REAL AND THE IMAGINARY PART 

As is well known, the F-function has no zeros. However, the function values 
are real along the real axis, and we now ask if there are curves in the complex 
plane where the real or the imaginary part vanishes. It will then be helpful to 
consider points z = x + eei with x real. We start with the imaginary part 
and find 

Im F(z) = eF'(x) sin v + 2e2F"1(x) sin 2v + 0(e3). 

This part will vanish if F'(x) = 0, and further we see that we must have 
sin 2v = 0, giving v = i/2. The points defined by F'(x) = 0 are well known 
and (except for the first one) lie between the poles. A few of them are given 
in [2] (1.46163, -0.504, -1.573, -2.611, -3.635, -4.658, -5.667, -6.678, 
etc.). 

Since the real part cannot vanish in a regular point on the real axis, we have 
to investigate the situation close to the poles. We have 

F(z - n) = (n ) ( + eiz + e2Z2 n! z 

and define 

R =F(-n +gee)=(! (g- e-'v + ei + e24gev + . .). 

:~~~~~~~~t 

-10 -5 0 5 10 

Im F(z) = 0; Rer(z) = o 

FIGURE 1. Real and imaginary zero lines 
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The real part is 

Re(R) - (- 1) [-lcos v +el + 0(e)] = 0 

with el = fi + n - l/(n + 1), n = 0O 1, 2, ..., which gives cos v = -ele, 
i.e., v z r/2 + epe. Hence, both types of curves pass vertically over the real 
axis (note, however, that this vertical direction changes very rapidly owing to 
the large values of el ). We see that there is one curve with vanishing real part 
passing through every pole. 

The practical computation is tedious but straightforward, and the resulting 
figure is only intended to give a general impression of the family of curves under 
discussion. 
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