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THE TI'-FUNCTION REVISITED: POWER SERIES
EXPANSIONS AND REAL-IMAGINARY ZERO LINES

JAN BOHMAN AND CARL-ERIK FROBERG

ABSTRACT. Explicit power series expansions of the gamma function are given
close to —10, -2, —1,0,1, 2, 3, 4, and 10 together with formulas that can
be used in other integer points. Further, curves along which the real or imaginary
part of the function vanish are presented.

1. INTRODUCTION

When just one isolated value of the I'-function is needed, it may be computed
in a straightforward fashion by Stirling’s formula, followed by repeated use of
the functional relation I'(z+ 1) = zI'(z) . However, if more detailed knowledge
of the function is desired within a small area close to the real axis, a different
approach might be reasonable. For n =2, 3, 4, 10 we give expansions of the
form

Fn+1+z)=n(l+dz+dyz*+--),

and for n=0,1, 2,10,
(D" I'(—n+2z)=n/(1-2)-1/{(n+ 1)1 + 2))
+z7Y 1+ fiz+ fr22 + ).

Reasonably fast convergence is obtained, at least for |z| < 1.

2. A USEFUL ALGORITHM

We will propose an algorithm for computation of certain finite products (also
infinite when convergent). This will give us a tool for determining various sets
of coefficients. Let

n X\ ™
(1) P=H(1+—) =l+ux+ux?+---,
k=1 P

where p, and my; are given real numbers # 0 and the coefficients u; are to
be determined. Taking logarithms and differentiating, we obtain

n n
X P’ my
In P= mln(l+—-—), — = .
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Now we define

(2) f;'(x)=(_1)r+lzmk(x+pk)_r> r=1>2s 3>~~->
k=1

with the obvious property
(3) F (%) = rfre1(x).

Further, we put

(4) FO) =w, = (1) Y mypy.

k=1
Repeated differentiation gives
P'=Pf,
PII — Plfi + Pf‘2 s
Plll =P”ﬁ +2Plf‘2+2Pf£§,
Piv =P'”f1 +3P”f2+6P’f3+6Pﬁ;,

Setting x = 0 and observing that P(")(0) = rlu, with P(0) = 1, we get the
system

Uy =wi,
2uy = Wil + Wy,
(5) 3u; = wiuy + wauy + W

duy = Wiz + Wally + Wiy + Wy,

.........

Note that if the my; are positive integers, then P is a polynomial, and all u
with k > 3" 'm, are zero. Using Cramer’s rule, we find after some manipu-
lation:

w; -1 o - 0
1 |w2  w -2 .. 0
(6) Uy = o w3z Wy W .
e _(n_l)
wn wn—l e oo wl

In practical computation the system (5) should be solved recursively. However,
we also present the first few values explicitly:

U =w,
Uy = %(wlz + w2)>
(7 Uz = %('wf + 3w wy + 2ws),

ug = (Wi + 6wiw, + 8wiws + 3w + 6w,),

It is interesting to observe that these expressions also appear in a quite differ-
ent context. Consider the permutations of, e.g., four objects, which we denote
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1,2,3, and 4. Let (1)(2)(3)(4) be the identical permutation; (13)(24) the
permutation where 1 and 3 switch places, and the same for 2 and 4; (3)(142)
the permutation where 3 keeps its place, while 1 goes over into 4, 4 into 2, and
2 into 1; etc. Denote a part permutation involving k objects by sy ; then, e.g.,
(1)(3)(24) is written s2s,, (2)(143) as s;53, and so on. Writing down all
24 = 4! permutations and dividing by 24, we get the so-called cycle index

Sa = (st + 6575y + 85153 + 357 + 654),
an expression with exactly the same structure as u4 in (7).

3. POWER SERIES EXPANSION FOR I'(z + 2)

As is well known, the I'-function is defined in product form by

® M+ = Iy
n=1

where as usual y is the Euler constant, y = 0.5772156649... . Taking loga-
rithms, we obtain

lnl"(z+1)=—yz+i[%—ln(l+%)]

n=1

)4 30 CPE - )
n=2

where {(n) = Y po, k™, n > 1, is the Riemann zeta function. Now we
introduce the notations

=(l-y)z—-In(l+z

gi=1-y,
®) {&=04ﬂaw—n, r=2,3,4,...,

and obtain I'(z +2) = exp(g1z + 38,22 + 1 g3z +---) . We can then construct
the corresponding power series
(10) G(z)=T(z+2)=exp(giz+ig22*+--)
=l+cz+caz?+czi+---.
Differentiation gives
G(2)=G(2) (g1 + &z +&2z*+- ) =c1+20z+ 3322+ ---.
Hence, we obtain a linear system
€1 =81,
2=g101+ &,
3c3=g102+ &201 + &3,

.........

which has the same structure as (5). The solution is

n!

g -1 0 0 -~ 0
11& & -2 0 - 0
(11) G=—|8& & & -3 -+ 0

gn gn—l oo oo oo gl
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TABLE 1
Numerical values of g, (9) and ¢, (11). For larger values of k,
(=1)k(2-+1) — 3=(k+1)) s g remarkably good approximation of
Ck -
n &n Cn n &n Cn
1 0.4227843351+0  0.42278433514+0 11 —0.4941886041 —3 —0.24094 14358 —3
2 0.6449340668+0  0.411840330440 12  0.24608 65533 -3  0.12167 38065 -3
3 —0.2020569032+0  0.8157691925—1 13 —0.1227133476 -3 —0.6079289132—4
4 0.8232323371-1 0.7424901075—1 14  0.61248 13506 —4  0.30453 55703 —4
5 —0.3692775514—1 —0.2669820687 -3 15 —0.3058823631 -4 —0.1523493590—4
6 0.1734306198 —1 0.1115404572—-1 16  0.1528225941 -4  0.76217 79696 —5
7 —0.8349277382 -2 —0.2852645821-2 17 -0.7637197638 —5 —0.3812110400-5
8 0.4077356198—2  0.2103933341 -2 18 0.3817293265-5  0.19064 91658 —5
9 —0.2008392826 -2 —0.9195738388—-3 19 —0.1908212717—-5 —0.9533877803 -6
10 0.9945751278 =3  0.4903884508 —3 20  0.9539620339—6  0.4767416946 —6

The coefficients ¢, are well known; they were given by Davis [1, p. 186]
and were denoted there by E,. On the other hand, only very few power series
expansions are reported in the Handbook of Mathematical Functions [2]; the
most interesting is one for 1/I'(z). We note here that z = +1 leads to the
relation ¢; +c3+cs+---=Cr+Ca+ce+-r=1.

The numerical values of ¢, are obtained recurs1vely from the linear system.
They are displayed in Table 1 together with the constants g .

4. POWER SERIES EXPANSIONS FOR I'(n+ 1 + 2)

Using the fundamental relation I'(z + 1) = zI'(z) repeatedly, we find, when
n>2,

Fn+l+z)=(z+n)(z+n-1)---(z+2)[(z+2)
or, after division by I'(n + 1) = n!,
Tntl+z) (), 2 2. (142 24 ...
(12) YCEE)) _(1+2)(1+3) (l+n)(1+clz+czz+ )-

The product (1+%)(1+%)---(1+Z2)=1+a1z+ v+ a,_1z" ! is computed
as in (5) with w, = (=1)"*' Y }_, k=" (note that w, depends on n). Finally,
we compute the product

(13)

and obtain the result

(I+aiz+-+ap 12" DVl +ciz+ ez +--)=1+diz+dyz* + -

k
di = arck—r

r=0

with @p = ¢g = 1 and gy = 0 when k > n. It is obvious that also the
coefficients d;, d,, d3, ... depend on n. The case n =1 is trivial, since then
dy = c . Also the case n = 0 is easy to handle, since the relation I'(z + 1) =
I'(z+2)/(z+ 1) leads to dy = ¢x — dx—; With dg=1. For n=2,3,4 and
10, numerical values of d; are given in Table 2.

(14)
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TABLE 2
The coefficients d; for computation of T'(n+1+2z)=T(n+1)-
(1+dz+dyz?+---). When n=1 we have dy = c; (see Table
1). When n=0,use T(1+z)=(14+ciz+cz*+---)/(1+2).

k n=2 n=3 n=4 n=10
1 0.92278 43351 +00 0.1256117668 +01 0.15061 17668 +01 0.23517 52589 +01
2 0.6232324980+00 0.9308272763+00 0.1244856693+01 0.28129 53288 +01
3 0.2874970845+00 0.4952412505+00 0.7279480695+00 0.2278217646+01
4  0.1150374704+00 0.2108698319+00 0.3346801445+00 0.1403786967 +01
5 0.3685752331 —01 0.75203 34677 —01 0.1279208047+00 0.7012189188 +00
6 0.1102055468 —01 0.2330639579 —01 0.4210723248 —01 0.29552 29663 +00
7  0.2724377038 —02 0.6397895266 —02 0.1222449421 —01 0.10799 66380 +00
8 0.6776104301 —03 0.1585736109 —02 0.3185209926 —02 0.34911 52784 —01
9 0.1323928315-03 0.3582629749 —03 0.75469 70023 —03 0.1013547328 —01
10 0.3060153141—-04 0.7473247525—-04 0.1642982190—-03 0.2674217142 -02
11 0.4252789587—05 0.1445330006—-04 0.3313641887 —04 0.6474128057 —03
12 0.1203088620 —05 0.26206 85149 —05 0.6234010164 —05 0.14494 79266 —03
13 0.4401195495—-07 0.4450414950—-06 0.1100212782—-05 0.3020944116—04
14  0.5711138227-07 0.7178203392—-07 0.1830424077 —06 0.58937 70496 —05
15 -0.8157376050—-08 0.1087975137—-07 0.2882525985—-07 0.1081535153—-05
16 0.4311748695—-08 0.1592623345—08 0.4312561188 —08 0.1874504774 —06
17 —0.1220552013-08 0.2166975524 —09 0.6148533886 —-09 0.3079697095—07
18  0.4364575319-09 0.2960686106—10 0.8378124916—10 0.4811678892 —08
19 —0.1419514757-09 0.3534368324—11 0.1093608359—10 0.7169506577 —09
20 0.47804 44902 —10 0.4872904734—12 0.13708 82554 —11 0.1021391242 —09

5. POWER SERIES EXPANSION RELATED TO ['(—#n + z)

By straightforward calculation we find

319

_(=D)'I(z+2) B _ZN (4 Z -1
(15) T(z-n)= T{(1+z)(l z)(l 5) (1 n)} .
Hence, m; = —1 and p; = —k, if we add an extra value pg = 1. In this way
we obtain
n
(16) wy= (=1 +Y k™.
k=1

The coefficients b, for the reciprocal of the expression within braces are again
obtained from (5). The final coefficients e, defined through

[(z—-n)=((-1)"/n'z)(1 +e,z+eyz2+---)
can be computed as in (14). When n = 0, we have

F(Z) r(z+2)=';‘(1+Clz+0222+"')(1—Z+22—~~~)

T z(z+1)
1
=~Z—(1+€1Z+€222+“'),

and hence e, = ¢, —e,_; with ¢y = 1. Obviously, the coefficients ¢ and d are
identical when n=0.
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TABLE 3
Coefficients fi for n = 0,1,2,10 and k = 1(1)20 defined
by (-1)"nlI'(-n+ 2z) = n/(1 —2)—1/(n + 1)(1 + z) +
1+ fiz+ foz2+--+).
k n=0 n=1 n=2 n=10
1 0.4227843351+0 —0.7721566490—-1 —0.7438823316+0 —0.7557338320+1
2 —0.1094400467 —1 —0.8815966957 -1 —0.4601008354+0 —0.5728188072+1
3 0.9252092392 —1 0.4361254346 -2 —0.2256891633+0 —0.3986202989 + 1
4 —0.1827191317—-1 —0.1391065882—-1 —0.1267552405+0 —0.25857 89587 +1
5 0.1800493110—1 0.40942 72277 -2 —0.5928334797—-1 —0.1580626439 +1
6 —0.6850885379—-2 —0.2756613102—-2 —0.3239828709—-1 —0.9220023064 +0
7 0.39982 39558 -2 0.1241626456 —2 —0.1495751709 -1 —0.5176270823 +0
8 —0.1894306217 -2 —0.6526797612—-3 —0.8131438305—-2 —0.2822577798 +0
9 0.9747323780 -3 0.3220526168 —3 —0.3743666536 -2 —0.1503697153+0
10 —0.4843439272 -3 —0.1622913104 -3 —0.2034124578—-2 —0.7875712620—1
11 0.2434024914 -3 0.8111118100—-4 —0.9359511081 -3 —0.4069995193 —1
12 —0.1217286849 -3 —0.4061750386 —4 —0.5085930579—-3 —0.2083900601 —1
13 0.6093579356 -4  0.2031828969 —4 —0.2339782393 -3 —0.10591 68640 —1
14 —-0.3048223652 -4 —0.1016394683 —4 —0.1271530665—-3 —0.5358239971 -2
15 0.15247 30062 —4 0.5083353797 -5 —0.5849317943 -4 —0.27001 07474 -2
16 —0.7625520927 -5 —0.2542167130—-5 —0.3178875684 -4 —0.1357696113 -2
17 0.38134 10527 -5 0.1271243397 -5 —0.1462313503 -4 —0.68127 30636 —3
18 —0.19069 18869 -5 —0.6356754719 -6 —0.7947242984—-5 —0.3415598177-3
19 0.9535310888 —6 0.3178556169 —6 —0.3655765875—-5 —0.1710444012 -3
20 —-0.4767893943 -6 —0.1589337773—-6 —0.1986816715—-5 —0.8563572098 —4

It turned out that the coefficients e; for large values of k essentially behave
as n+ (—1)¥/(n+1). For this reason, we tabulate in Table 3 other coefficients
fi defined by

(17) fe=e—(n+ (=1)}/(n+1)),

giving much better accuracy. If a complete power series is wanted, it is an easy
matter to recompute the coefficients ¢, . Using the new coefficients, we find

(=1)" (=
m-D1-z) (n+ D1+ 2)

This formula will give reasonable results, even when |z| is only slightly less
than 1, and when |z| < %, we will get 10-digit accuracy. In the case n =0 we
get

(19)
with

+( l)n(l+f1z+f2z2+~~).

(18) I'(-n+z) = ;!Z

fe=di+ (1) =g + (=11, k=1,2,3,...,

1
Na)=-117

and, of course, I'(1 + z) = zI'(z). For larger values of k, the coefficients f
behave approximately as —2K(n(n — 1) + (=1)*/(n + 1)(n +2)).

Since the coefficients vary in a very regular manner for larger values of k, at
least 8-digit accuracy is easily attainable when |z| < 1.

1
+E(l+flz+f222+“')
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6. ZERO LINES FOR THE REAL AND THE IMAGINARY PART

As is well known, the I'-function has no zeros. However, the function values
are real along the real axis, and we now ask if there are curves in the complex
plane where the real or the imaginary part vanishes. It will then be helpful to
consider points z = x + €e’” with x real. We start with the imaginary part
and find

Im I'(z) = eI"(x) sin v + 1’I"(x) sin 2v + O(&%).

This part will vanish if I'(x) = 0, and further we see that we must have
sin 2v = 0, giving v = /2. The points defined by I""(x) = 0 are well known
and (except for the first one) lie between the poles. A few of them are given
in [2] (1.46163, —0.504, —1.573, -2.611, —3.635, —4.658, —5.667, —6.678,
etc.).

Since the real part cannot vanish in a regular point on the real axis, we have
to investigate the situation close to the poles. We have

I(z-n)= (—l)n(1+€12+€222+"-)

n'z
and define
— vy _ (_l)n -1 ,—iv iv
R=T(-n+ee )—T(s e ' +e +exett +---).
y
\\\
10
A |
D
X
-10 5 0 5 10

ImI'(z)=0; ReI'(z) =0

FIGURE 1. Real and imaginary zero lines
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The real part is

(=D" 1.1
Re(R) = ! [s cos v + e + 0(8)] =0
with e; = fi+n—-1/(n+1), n=0,1,2,..., which gives cosv = —e¢,
i.e., v ~ m/2 + e;e. Hence, both types of curves pass vertically over the real
axis (note, however, that this vertical direction changes very rapidly owing to
the large values of e, ). We see that there is one curve with vanishing real part
passing through every pole.

The practical computation is tedious but straightforward, and the resulting
figure is only intended to give a general impression of the family of curves under
discussion.
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